Home
SOC
Examples and applications
Benefits of criticality
Tutorial program and files
References


Bibliography

Bibliography


1
P. Bak, C. Tang, and K. Wiesenfeld.
Self-organized criticality: an explanation of $ 1/f$ noise.
Phys. Rev. Lett., 59:381-384, 1987.

2
P. Bak, C. Tang, and K. Wiesenfeld.
Self-organized criticality.
Phys. Rev. A, 38:364-374, 1988.

3
J. Beggs.
The criticality hypothesis: how local cortical networks might optimize information processing.
Proceedings of the Royal Society A., 2007.

4
J. Beggs and D. Plenz.
Neuronal avalanches in neocortical circuits.
J. Neurosci, 23:11167-11177, 2003.

5
J. Beggs and D. Plenz.
Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures.
J. Neurosci, 24(22):5216-5229, 2004.

6
B. A. Carreras, D. E. Newman, I. Dobson, and A. B. Poole.
Evidence for self-organized criticality in a time series of electric power system blackouts.
IEEE TA on Circuits and Systems, 51(9):1733-1740, 2004.

7
D. Chialvo.
Are our senses critical?
Nature Physics, 2:301-302, 2006.

8
L. de Arcangelis, C. Perrone-Capano, and H. J. Herrmann.
Self-organized criticality model for brain plasticity.
Phys. Rev. Lett., 96:028107(4).

9
R. Der, F. Hesse, and G. Martius.
Rocking stumper and jumping snake from a dynamical system approach to artificial life.
Adaptive Behavior, 14(2):105-115, 2006.

10
H. J. S. Feder and J. Feder.
Self-organized criticality in a stick-slip process.
Phys. Rev. Lett., 66:2669-2672, 1991.

11
V. Frette, K. Christensen, A. M. Malthe-Sørenssen, J. Feder, T. Jøssang, and P. Meakin.
Avalanche dynamics in a pile of rice.
Nature, 397:49, 1996.

12
B. Gutenberg and C. F. Richter.
Ann. Geophys., 9:1, 1956.

13
C. Haldeman and J. Beggs.
Critical branching captures activity in living neural networks and maximizes the number of metastable states.
Phys. Rev. Lett., 94, 2005.

14
L. P. Kadanoff, S. R. Nagel, L. Wu, and S. Zhou.
Scaling and universality in avalanches.
Phys. Rev. A, 39(12):6524-6537, Jun 1989.

15
O. Kinouchi and M. Copelli.
Optimal dynamical range of excitable networks at criticality.
Nature Physics, 2:348-352, 2006.

16
R. A. Legenstein and W. Maass.
Edge of chaos and prediction of computational performance for neural microcircuit models.
Neural Networks, pages 323-333, 2007.

17
A. Levina, U. Ernst, and J. M. Herrmann.
Criticality of avalanche dynamics in adaptive recurrent networks.
Neurocomputing, 70(10-12):1877-1881, 2007.

18
A. Levina, J. M. Herrmann, and T. Geisel.
Phase transitions towards criticality in a neural system with adaptive interactions.
accepted to PRL.

19
A. Levina, J. M. Herrmann, and T. Geisel.
Dynamical synapses give rise to a power-law distribution of neuronal avalanches.
In Y. Weiss, B. Schölkopf, and J. Platt, editors, Advances in Neural Information Processing Systems 18, pages 771-778. MIT Press, Cambridge, MA, 2006.

20
A. Levina, J. M. Herrmann, and T. Geisel.
Dynamical synapses causing self-organized criticality in neural networks.
Nature Physics, 3:857-860, 2007.

21
B. D. Malamud, G. Morein, and D. L. Turcotte.
Forest fires: An example of self-organized critical behavior.
Science, 281(5384):1840 - 1842, 1998.

22
S. S. Manna, L. B. Kiss, and J. Kertesz.
Cascades and self-organized criticality.
Journal of Statistical Physics, 61(3-4):923-932, 1990.

23
A. Mazzoni, F. D. Broccard, E. Garcia-Perez, P. Bonifazi, M. E. Ruaro, and V. Torre.
On the dynamics of the spontaneous activity in neuronal networks.
PLoS ONE, 2(5):e439, May 2007.

24
T. Petermann, M. Lebedev, M. Nicolelis, and D. Plenz.
Neuronal avalanches in vivo.
Society for Neuroscience Abstracts, 2006.

25
D. Plenz and T. C. Thiagarajan.
The organizing principles of neuronal avalanches: cell assemblies in the cortex?
Trends in Neurosciences, 30(3):101-110, 2007.

26
C. V. Stewart and D. Plenz.
Inverted-u profile of dopamine-nmda-mediated spontaneous avalanche recurrence in superficial layers of rat prefrontal cortex.
J Neurosci., 26(31):8148-59, 2006.

27
J. Teramae and T. Fukai.
Local cortical circuit model inferred from power-law distributed neuronal avalanches.
J Comput Neurosci, 22(3):301-312, 2007.
 
Anna Levina and J. Michael Herrmann