A Neural Based Feature-Binding Model

Hecke Schrobsdorff

Max Planck Institute for Dynamics and Self-Organization

SS 2005
Outline

1. Introduction
2. Bumps in spiking networks
3. Neural Feature-Binding Model
Outline

1. Introduction
2. Bumps in spiking networks
3. Neural Feature-Binding Model
Outline

1. Introduction
2. Bumps in spiking networks
3. Neural Feature-Binding Model
Introduction

- Understanding brain functions via computational methods
- Linking behavioral experiments and findings from neurobiology
- With the means of dynamical systems
- On both analytical and simulative levels.
- Therefore simplifying of the behavioral and the biological level
- To identify critical aspects
- And extract them to make predictions or proposals for further experiments.
Introduction

- Understanding brain functions via computational methods
- Linking behavioral experiments and findings from neurobiology
- with the means of dynamical systems
- on both analytical and simulative levels.

Therefore simplifying of the behavioral and the biological level
- to identify critical aspects
- and extract them to make predictions or proposals for further experiments.
Introduction

- Understanding brain functions via computational methods
- Linking behavioral experiments and findings from neurobiology
- with the means of dynamical systems
- on both analytical and simulative levels.
- Therefore simplifying of the behavioral and the biological level
- to identify critical aspects
- and extract them to make predictions or proposals for further experiments.
Introduction

- Modeling processes in the brain as dynamical systems
 - Single neurons
 - Whole Networks of neurons
 - phenomenological aspects
- Taking into account experimental results
- Reproducing effects found in psychological or biological experiments
- Finding their causes (at least in the model)
Introduction

- Modeling processes in the brain as dynamical systems
 - Single neurons
 - Whole Networks of neurons
 - phenomenological aspects
- Taking into account experimental results
 - Reproducing effects found in psychological or biological experiments
 - Finding their causes (at least in the model)
Introduction

- Modeling processes in the brain as dynamical systems
 - Single neurons
 - Whole Networks of neurons
 - phenomenological aspects
- Taking into account experimental results
- Reproducing effects found in psychological or biological experiments
- Finding their causes (at least in the model)
Introduction

- Modeling processes in the brain as dynamical systems
 - Single neurons
 - Whole Networks of neurons
 - phenomenological aspects
- Taking into account experimental results
- Reproducing effects found in psychological or biological experiments
- Finding their causes (at least in the model)
Neural Coding
Introduction

How does the brain store or process information?

- Particular neurons have individual functions
- Columnar structure of the cortex
- Location of collective activity of nearby neurons is important

Therefore we have to know first
 - why activation does not spread
 - why activation does not die out

- but forms localized regions of activation.
How does the brain store or process information?

- **Particular neurons have individual functions**
- **Columnar structure of the cortex**
- **Location of collective activity of nearby neurons is important**

Therefore we have to know first

- why activation does not spread
- why activation does not die out

but forms localized regions of activation.
Neural Coding

Introduction

How does the brain store or process information?

- Particular neurons have individual functions
- Columnar structure of the cortex
- Location of collective activity of nearby neurons is important

Therefore we have to know first
- why activation does not spread
- why activation does not die out
- but forms localized regions of activation.
A Neural Based Feature-Binding Model

Introduction

Neural Coding

Introduction

How does the brain store or process information?

- Particular neurons have individual functions
- Columnar structure of the cortex
- Location of collective activity of nearby neurons is important

Therefore we have to know first
- why activation does not spread
- why activation does not die out
- but forms localized regions of activation.
How does the brain store or process information?

- Particular neurons have individual functions
- Columnar structure of the cortex
- Location of collective activity of nearby neurons is important

Therefore we have to know first
 - why activation does not spread
 - why activation does not die out

but forms localized regions of activation.
Summary: Computational Neuroscience

- Use *experimental data* to model the physical processes in the brain
 - as realistic as possible
 - as simple as possible.
- There is always a tradeoff between biological meaning and computational hardness.
- On the level of connectivity and distribution of tasks in the brain, not much is known. Models provide a hypothesis to be tested.
Use *experimental data* to model the physical processes in the brain
- as realistic as possible
- as simple as possible.

There is always a tradeoff between biological meaning and computational hardness.

On the level of connectivity and distribution of tasks in the brain, not much is known. Models provide a hypothesis to be tested.
A Neural Based Feature-Binding Model
Bumps in spiking networks

Single Unit Model
Neural Breathers

\[
\frac{1}{\gamma} \frac{dv}{dt} = v_\infty - v + r_m I_e
\]

- Leaky Integrate’n’Fire Neurons:
 - resting potential \(v_\infty\)
 - threshold potential \(v_{th}\)
 - refraction potential \(v_{reset}\)
Network structure

- **delta coupling**
 - spatial organization in a chain
 - equal synaptic weights ϵ only to the two nearest neighbours, all excitatory

- synaptic delay τ
 - network size arbitrary, only localized activations are of interest
 - no synaptic changes, i.e. no learning
Network structure

- delta coupling
- spatial organization in a chain
 - equal synaptic weights ϵ only to the two nearest neighbours, all excitatory

- synaptic delay τ
- network size arbitrary, only localized activations are of interest
- no synaptic changes, i.e. no learning
Network structure

- delta coupling
- spatial organization in a chain
- equal synaptic weights ϵ only to the two nearest neighbours, all excitatory

\[
\begin{align*}
\dot{v}_i &= \epsilon (v_{i-2} + v_{i-1} - 2v_i + v_{i+1} + v_{i+2}) \\
\text{synaptic delay } \tau \\
\text{network size arbitrary, only localized activations are of interest} \\
\text{no synaptic changes, i.e. no learning}
\end{align*}
\]
Network structure

- delta coupling
- spatial organization in a chain
- equal synaptic weights ϵ only to the two nearest neighbours, all excitatory

\[
\begin{align*}
\epsilon & \quad \epsilon \\
V_{i-2} & \quad V_{i-1} & \quad V_i & \quad V_{i+1} & \quad V_{i+2}
\end{align*}
\]

- synaptic delay τ
- network size arbitrary, only localized activations are of interest
- no synaptic changes, i.e. no learning
Network structure

- delta coupling
- spatial organization in a chain
- equal synaptic weights ϵ only to the two nearest neighbours, all excitatory

$$v_{i-2} \xrightarrow{\epsilon} v_{i-1} \xrightarrow{\epsilon} v_{i} \xrightarrow{\epsilon} v_{i+1} \xrightarrow{} v_{i+2}$$

- synaptic delay τ
- network size arbitrary, only localized activations are of interest
- no synaptic changes, i.e. no learning
Network structure

- delta coupling
- spatial organization in a chain
- equal synaptic weights ϵ only to the two nearest neighbours, all excitatory

$$v_i - 2 \quad v_i - 1 \quad v_i \quad v_i + 1 \quad v_i + 2$$

- synaptic delay τ
- network size arbitrary, only localized activations are of interest
- no synaptic changes, i.e. no learning
Simplest persistent bump

\[\tau > \ln \left(1 + \sqrt{\frac{v_{\text{reset}} - v_{\text{th}}}{v_{\infty} - v_{\text{th}}}}\right) \]
Feature Binding

exemplary setting in the visual pathway:

- Features of objects in the view are decomposed
 - Shape
 - Color
- This information has to be recombined
 - Flexible
 - Persistent for some time
Feature Binding

exemplary setting in the visual pathway:

- Features of objects in the view are decomposed
 - Shape
 - Color
- This information has to be recombined
 - Flexible
 - Persistent for some time
exemplary setting in the visual pathway:

- Features of objects in the view are decomposed
 - Shape
 - Color
- This information has to be recombined
 - Flexible
 - Persistent for some time
Feature Binding Model

- 3 chains of leaky integrate and fire neurons
- More complex intern neighborhood for
 - strong localization
 - global inhibition
- Inter-layer connections are
 - All to all
 - equally excitatory
- between
 - PFC ↔ V4
 - PFC ↔ IT
Feature Binding Model

- 3 chains of leaky integrate and fire neurons
- More complex intern neighborhood for
 - strong localization
 - global inhibition
- Inter-layer connections are
 - All to all
 - equally excitatory
- between
 - PFC ↔ V4
 - PFC ↔ IT
A Neural Based Feature-Binding Model

Neural Feature-Binding Model

Feature Binding Model

- 3 chains of leaky integrate and fire neurons
- More complex intern neighborhood for
 - strong localization
 - global inhibition
- Inter-layer connections are
 - All to all
 - equally excitatory
- between
 - PFC ↔ V4
 - PFC ↔ IT
Feature Binding Model

- 3 chains of leaky integrate and fire neurons
- More complex intern neighborhood for
 - strong localization
 - global inhibition
- Inter-layer connections are
 - All to all
 - equally excitatory
- between
 - PFC ↔ V4
 - PFC ↔ IT
Results of the feature-binding model

Bump Initiation

IT

PFC

V4

time vs. neuron index

external input
Results of the feature-binding model
Multiple Objects

IT

PFC

V4
Results of the feature-binding model
Killing Memory

- IT
- PFC
- V4
Results of the feature-binding model
Searching for a Lost Feature
Results of the feature-binding model
Changing a Feature
Bumps in spiking networks provide the flexibility to model feature binding in the visual system.

- Only a proof of concept yet
- Several effects match the real situation:
 - Ability for short term memory
 - Limited memory capacity
 - Wrong binding with a certain probability
Summary: Feature Binding

- Bumps in spiking networks provide the flexibility to model feature binding in the visual system.
- Only a proof of concept yet
- Several effects match the real situation:
 - Ability for short term memory
 - Limited memory capacity
 - Wrong binding with a certain probability
Summary: Feature Binding

- *Bumps in spiking networks* provide the flexibility to model feature binding in the visual system.
- Only a proof of concept yet
- Several effects match the real situation:
 - Ability for short term memory
 - Limited memory capacity
 - Wrong binding with a certain probability
Summary: Feature Binding

- *Bumps in spiking networks* provide the flexibility to model feature binding in the visual system.
- Only a proof of concept yet
- Several effects match the real situation:
 - Ability for short term memory
 - Limited memory capacity
 - Wrong binding with a certain probability
Summary: Feature Binding

- *Bumps in spiking networks* provide the flexibility to model feature binding in the visual system.
- Only a proof of concept yet
- Several effects match the real situation:
 - Ability for short term memory
 - Limited memory capacity
 - Wrong binding with a certain probability
Outlook

- Extension of the chains to a structure that allows for more interesting behavior
 - two dimensional grid
 - random connectivity network

- Tuning to greater robustness

- Compare to Experiments
Outlook

- Extension of the chains to a structure that allows for more interesting behavior
 - two dimensional grid
 - random connectivity network

- Tuning to greater robustness

- Compare to Experiments
Outlook

- Extension of the chains to a structure that allows for more interesting behavior
 - two dimensional grid
 - random connectivity network
- Tuning to greater robustness
- Compare to Experiments