Aging Deficits as a Side-Effect of Optimization

Hecke Schrobsdorff\(^1,2\), Matthias Ihrke\(^1,3\), Jörg Behrendt\(^1,3\), Marcus Hasselhorn\(^1,3\), J. Michael Herrmann\(^1,4\)

hecke@nld.ds.mpg.de

1 Bernstein Center for Computational Neuroscience Göttingen
2 University of Göttingen, Institute for Nonlinear Dynamics
3 University of Göttingen, Georg-Elias-Müller Institute for Educational Psychology
4 University of Edinburgh, School of Informatics

BCCN Symposium München 08.10.2008
Aging Effects in Selective Attention

Behavioral Experiments

Theoretical Psychology

ERP Analysis

Computational Modeling

EEG Recordings

Advanced Averaging

Single Trial ERPs

Biology of Aging
Aging Effects in Selective Attention

Behavioral Experiments

Theoretical Psychology

EEG Recordings

Computational Modeling

ERP Analysis

Advanced Averaging

Single Trial ERPs

Biology of Aging
Aging Effects in Selective Attention

Behavioral Experiments

Theoretical Psychology

EEG Recordings

Computational Modeling

Advanced Averaging

See Poster #12 by Jörg Behrendt

See Poster #52 by Matthias Ihrke

ERP analysis

ERP

Biology of Aging

Psychology

Theoretical Behavior

Experiments

Real-Time EEG Recordings
Cognitive Aging

Manifestations/Causes of Cognitive Aging

- slower speed (Salthouse (1996))
- fewer resources (Craik and Byrd (1982))
- less inhibition (Zacks and Hasher (1997))
- explicit memory decline (Park and Shaw (1992))
- impaired memory recall (Craik and Byrd (1982))

Recent Theories

- common cause theory (Baltes and Lindenberger (1997))
- motivational change (Baltes 1997)
Probing Fluid Intelligence

Raven’s Progressive Matrices
- measure for fluid intelligence
- insertion of the correct piece
- increasing complexity
- error classification

Performance of Older Subjects
- number of errors is age dependent
- type of error depends on ability
- but ability confounds with age

(Babcock (2002))
Fundamentals for Modeling of Aging

Ways to incorporate aging into neurocomputational models

- reduction of the number of neurons (Shefer 1973)
- reduction of white matter volume \rightarrow number of synapses (Horn et al. (1993))
- suboptimal neuromodulation (dopamine) (Braver and Barch (2002))
- less cognitive control (Brown (2007), Cohen (2001))
- noise increase (Li et al. 2006)
- longer learning history (Nadel and Moscovich (2002), Schrobsdorff et al. in preparation)
Learning impairs Flexibility

main idea

A decline in fluid intelligence may be caused by adaptation of the brain towards every day stimuli.

fluid intelligence

- intellectual flexibility
- complex associations
- optimal search strategies

in network models

- optimal computation
- high connection degree
- self-organized criticality
Self-Organized Criticality

Neural Model
- Hopfield network
- dynamical synapses
- homogeneous connectivity
- fixed connectivity

Properties
- parameter independent
- stable critical state
- scale-free exploration

(Levina, Herrmann, Geisel (2007))
Aging Deficits as a Side-Effect of Optimization
Learning impairs Flexibility

Avalanches in a Hebbian Hopfield-Network

Model Structure
- integrate and fire neurons
- all to all coupled
- dynamical synapses
- Hebbian learning rule

Simulation
- exposed to input patterns
- tested for avalanche size distribution during development
Aging Deficits as a Side-Effect of Optimization
Learning impairs Flexibility

Loss of Criticality

Results

- formation of highly connected clusters
- attractors for the avalanche dynamics
- global criticality vanishes
- avalanches within clusters
- intercluster avalanches
- no global flexible associations
Solving Raven Matrices

Layers
1. retinotopic map
2. feature units
3. mappings
4. rules
5. rule management
6. process control

Basics
- input via feature→location
- hierarchy of rules
- receptive fields for rules

Meta-Model for Easy Examples
- rules are activated by the figure for the different receptive fields
- propagate into the void place if they converge for both directions to the same response, done
- if not, search for more rules
Solving Raven Matrices

Layers
1. retinotopic map
2. feature units
3. mappings
4. rules
5. rule management
6. process control

Basics
- input via feature\leftrightarrow location
- hierarchy of rules
- receptive fields for rules

Meta-Model for Easy Examples
- rules are activated by the figure
- for the different receptive fields
- propagate into the void place
- if they converge for both directions to the same response, done
- if not, search for more rules
Solving Raven Matrices

Full Implementation
- feature units
- mapping of features between positions
- rule units, row-wise, column-wise
- rule input: features or mappings
- search in rule space (see Fig.)
- meta-rules (how to apply rules)

Rules
- geometrical relations
- algebraic relations
- different for different features
- identify irrelevant features
Conclusion

Take Home Message
- Aging impairments can be accessed in various ways.
- There is a tradeoff between adaptation to input and flexibility.
- Our model can deal with Raven matrices.

Outlook
- Consider different learning rules.
- Statistical comparison with convergence of the connectivity.
- Implement the Raven solving model in detail.
Thanks ...

Criticality
- Anna Levina

Simulation
- Georg Hildebrand

Solving Raven Matrices
- Marius Usher

Aging
- Shu-Chen Li
- Timo von Oertzen

... and to You!